new insight found in black hole collisions
Dernière Actualisation :04:52:03 GMT
 Lemarocaujourdhui, lemarocaujourdhui Actualités -
 Lemarocaujourdhui, lemarocaujourdhui Actualités -
Dernière Actualisation :04:52:03 GMT
 Lemarocaujourdhui, lemarocaujourdhui Actualités -

New insight found in black hole collisions

 Lemarocaujourdhui, lemarocaujourdhui Actualités -

 Lemarocaujourdhui, lemarocaujourdhui Actualités - New insight found in black hole collisions

Binary black hole
Tehran - FNA

A new research by an astrophysicist provided revelations about the most energetic event in the universe -- the merging of two spinning, orbiting black holes into a much larger black hole.
The work by Dr. Michael Kesden, assistant professor of physics at UT Dallas, and his colleagues provided for the first time solutions to decades-old equations that describe conditions as two black holes in a binary system orbit each other and spiral in toward a collision.
The research is available online and in the February 27 issue of the journal Physical Review Letters.
Kesden said the solutions should significantly impact not only the study of black holes, but also the search for gravitational waves in the cosmos. Albert Einstein's general theory of relativity predicts that two massive objects orbiting in a binary system should move closer together as the system emits a type of radiation called gravitational waves.
"An accelerating charge, like an electron, produces electromagnetic radiation, including visible light waves. Similarly, any time you have an accelerating mass, you can produce gravitational waves," Kesden said.
"The energy lost to gravitational waves causes the black holes to spiral closer and closer together until they merge, which is the most energetic event in the universe," he said. "That energy, rather than going out as visible light, which is easy to see, goes out as gravitational waves, which are very weak and much more difficult to detect."
While Einstein's theories predict the existence of gravitational waves, they have not been directly detected. But the ability to "see" gravitational waves would open up a new window to view and study the universe.
Optical telescopes can capture photos of visible objects, such as stars and planets, and radio and infrared telescopes can reveal additional information about invisible energetic events. Gravitational waves would provide yet another medium through which to examine astrophysical phenomena, Kesden said.
"Using gravitational waves as an observational tool, you could learn about the characteristics of the black holes that were emitting those waves billions of years ago, information such as their masses and mass ratios," he said.
"That's important data for more fully understanding the evolution and nature of the universe."
This year, a large-scale physics experiment called the Laser Interferometer Gravitational-Wave Observatory (LIGO) aims to be the first to directly detect gravitational waves. LIGO is the largest project funded by the National Science Foundation.
"The equations that we solved will help predict the characteristics of the gravitational waves that LIGO would expect to see from binary black hole mergers," Kesden said. "We're looking forward to comparing our solutions to the data that LIGO collects."
The equations Kesden solved deal specifically with the spin angular momentum of binary black holes and a phenomenon called precession.
Angular momentum is a measure of the amount of rotation a spinning object has. Spin angular momentum includes the rotation's speed and the direction in which that spin points. For a simple object like a spinning figure skater, the direction of angular momentum would point up.
Another type of angular momentum, called orbital angular momentum, applies to a system in which objects are in orbit about one another. Orbital angular momentum also has a magnitude and a direction.
In an astrophysical setting like a binary black hole system, the directions of the individual types of angular momenta change, or precess, over time.
"In these systems, you have three angular momenta, all changing direction with respect to the plane of the orbit -- the two spin angular momenta and the one orbital angular momentum," Kesden said.
"The solutions that we now have describe the orientations of the precessing black hole spins."
In addition to solving existing equations, Kesden also derived equations that will allow scientists to statistically track spin precession from black hole formation to merger far more efficiently and quickly.
"We can do it millions of times faster than was previously possible," he said.
"With these solutions, we can create computer simulations that follow black hole evolution over billions of years. A simulation that previously would have taken years can now be done in seconds. But it's not just faster. There are things that we can learn from these simulations that we just couldn't learn any other way."
Researchers from the University of Cambridge, the Rochester Institute of Technology and the University of Mississippi also contributed to the Physical Review Letters paper.

lemarocaujourdhui
lemarocaujourdhui

Nom *

Adresse Email *

Nom Du Commentaire*

Commentaire *

: Characters Left

Les conditions d'utilisations *

Les conditions d'éditions

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults. mean Non atteinte à l'auteur ou toutes autres personnes morales, Non atteinte à différents religions, Non incitation à la discrimination raciale et insultes.

J'accepte les conditions d'utilisations et droits d'auteur

Code De Sécurité*

new insight found in black hole collisions new insight found in black hole collisions

 



Nom *

Adresse Email *

Nom Du Commentaire*

Commentaire *

: Characters Left

Les conditions d'utilisations *

Les conditions d'éditions

Publishing Terms: Not to offend the author, or to persons or sanctities or attacking religions or divine self. And stay away from sectarian and racial incitement and insults. mean Non atteinte à l'auteur ou toutes autres personnes morales, Non atteinte à différents religions, Non incitation à la discrimination raciale et insultes.

J'accepte les conditions d'utilisations et droits d'auteur

Code De Sécurité*

new insight found in black hole collisions new insight found in black hole collisions

 



 Lemarocaujourdhui, lemarocaujourdhui Actualités -
 Lemarocaujourdhui, lemarocaujourdhui Actualités -
 Lemarocaujourdhui, lemarocaujourdhui Actualités -

GMT 17:28 2015 Jeudi ,16 Avril

Les Greschny, de l'art byzantin

GMT 08:03 2016 Samedi ,02 Janvier

Nissan Patrol named ‘SUV of the Year’

GMT 18:28 2015 Lundi ,13 Avril

Barack Obama et Raul Castro face à face

GMT 13:18 2017 Jeudi ,02 Mars

Thrilled Hamilton sees turbulence ahead

GMT 00:00 -0001 Lundi ,30 Novembre

Boss Bespoke : autopsie d’un sac

GMT 08:06 2017 Jeudi ,12 Janvier

‘Logan’ to premiere at Berlin film fest

GMT 17:19 2015 Jeudi ,16 Avril

Hollande attendu en Suisse pour tourner la page

GMT 11:51 2017 Samedi ,04 Mars

Fiji cruise at Las Vegas Sevens

GMT 04:39 2015 Jeudi ,01 Octobre

Avantages de citrouille pour améliorer la vue

GMT 23:26 2015 Mercredi ,22 Avril

Les 219 lycéennes enlevées par Boko Haram

GMT 01:25 2015 Samedi ,21 Mars

Health experts defend e-cigarettes

GMT 11:13 2015 Lundi ,09 Mars

Eagle captures remarkable view of Dubai

GMT 07:49 2015 Vendredi ,27 Mars

Kuwaiti crude up $3.73 to $52.69 per barrel
 Lemarocaujourdhui, lemarocaujourdhui Actualités -
 Lemarocaujourdhui, lemarocaujourdhui Actualités -
 
 Lemarocaujourdhui Facebook,lemarocaujourdhui facebook  Lemarocaujourdhui Twitter,lemarocaujourdhui twitter Lemarocaujourdhui Rss,lemarocaujourdhui rss  Lemarocaujourdhui Youtube,lemarocaujourdhui youtube  Lemarocaujourdhui Twitter,lemarocaujourdhui twitter

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2023 ©

Maintained and developed by Arabs Today Group SAL.
All rights reserved to Arab Today Media Group 2023 ©

lemarocaujourdhui lemarocaujourdhui lemarocaujourdhui lemarocaujourdhui
lemarocaujourdhui lemarocaujourdhui lemarocaujourdhui
lemarocaujourdhui
بناية النخيل - رأس النبع _ خلف السفارة الفرنسية _بيروت - لبنان
lemarocaujourdhui, Lemarocaujourdhui, Lemarocaujourdhui